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1.0 INTRODUCTION 

Future long-term manned spaceflights or space stations will 

require regenerative methods of life support. Previous investigations 

at M.I.T. and MODAR, Inc. indicated that urine and feces can be 

oxidized in supercritical water with high efficiencies (Price, 1982; 

Timberlake et al., 1982). Supercritical conditions exist for water at 

temperatures above 374OC (705OF) and pressures above 22.1 MPa (3200 

psia). Supercritical water properties are much different from those of 

room temperature water and depend strongly on the density of the 

water. The solvation properties of supercritical water at temperatures 

between 400 and 7OOOC and near critical pressures (22-30 MPa or 

3190-4350 psia) are also much different than those of normal water. 

Under these conditions, the water behaves like a dense gas with a high 

solubility of organics (Connolly, 1966), complete miscibility in all 

proportions with oxygen (Pray et al., 1952), high diffusivities 

(Franck, 1976; Flarsheim et al., 1985), low viscosity (Todheide, 1972), 

and low solubility and dissociation of inorganics, particularly ionic 

salts (Marshall, 1976; Martynova, 1976). The changes in solubility are 

due in part to the reduction in hydrogen bonding, since hydrogen 

bonding is a short range force, and has a diminished influence as the 

density of water decreases in 

properties make supercritical 

of wastes, since organics and 

the critical region. The solvation 

water an excellent medium for oxidation 

oxygen can be intimately mixed in a 
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single, homogeneous phase, and inorganics can be readily removed from 

solutions by precipitation. 

The oxidation of other organics in supercritical water was 

demonstrated by Modell et al. (1982), Cunningham (1986), and Wightman 

(1981). Modell et al. (1982) oxidized several toxic chlorinated 

hydrocarbons in supercritical water, destroying at least 99.99% of the 

organic chlorides and 99.97% of the TOC (total organic carbon). The 

maximum destruction efficiencies were limited by the resolution of the 

analytical techniques. Cunningham et al. (1986) demonstrated the 

applicability of this process to the complete destruction of biopharma- 

ceutical wastes. Oxidative reaction kinetics in supercritical water 

-were investigated by Wightman (1981) for phenol, a common component in 

industrial waste, and acetic acid, a characteristic by-product of 

conventional wet oxidation. A detailed review of the relevant litera- 

ture is available in a thesis supported by this contract by Helling 

(1986) and in a previous progress report for this contract (Huff et 

al., 1984). 

Pyrolysis reactions in supercritical water have also been stu- 

died. 

of promoting hydrolysis reactions have led to the use of supercritical 

water in the pyrolysis of wood, coal, and model compounds related 

to these. The initial work by Amin, Reid and Modell (1975), Woerner 

(1976) and Whitlock (1978) demonstrated the profound influence of 

supercritical water on pyrolysis products: no char formed from pyro- 

lysis of glucose in supercritical water and gasification increased over 

The unique solvent properties of the fluid and the possibility 

c 
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that possible in subcritical water. Recent work has confirmed the 

lack of char formation, and provided evidence of carbonium ion, free 

radical, and hydrolysis reactions from the products pyrolysis of 

glycerol (Anta1 et al., 1985), guaiacol (Lawson and Klein, 1985), and 

benzylphenylamine (Abraham and Klein, 1985). The fundamental pyrolysis 

'investigations have highlighted specific mechanisms for the influence 

of supercritical water on chemical reactions, which could aid the 

interpretation of oxidation data. 

2.0 SCOPE 

Although the efficient destruction of organic material has been 

demonstrated in the supercritical water oxidation process, the reaction 

kinetics and mechanisms are unknown. The work described here was 

divided into three primary parts: 

1) Study experimentally the kinetics and mechanisms of carbon 

monoxide and ammonia oxidation in and reaction with supercriti- 

cal water ; 

2) Perform experimental oxidations of urine and feces in a 

microprocessor controlled system; and 

3 )  Design a minaturized supercritical water oxidation process 

for space applications, including preliminary mass and energy 

balances, and power, space and weight requirements. 

CarGon monoxide and ammonia were selected as they are the simplest 

reactive carbon and nitrogen compounds and have been well-studied 



in the uncatalyzed and catalyzed gas-phase reactions. 

oxidize more slowly than other materials, and limit the overall 

conversion of organic nitrogen and organic carbon from complex mole- 

cules to molecular nitrogen and carbon dioxide. Part 1 was conducted 

at M.I.T.; Parts 2 and 3 were conducted at MODAR, Inc. 

They also 

3.0 ACCOMPLISHMENTS 

3.1 Oxidation of Urea 

The work on the oxidation of urea in supercritical water, by 

itself and with other organics, for the development of the supercri- 

tical water oxidation process for CELSS was conducted at MODAR, and is 

described in more detail in the progress report for October, 1983, to 

March 1984, for this contract, hereafter referred to as Huff et 

al. (1984). Mixtures of 4.4-4.8% by weight urea in water were oxidized 

with 36-67% excess oxygen, at a normal liquid flow of about 21 cm3/min, 

and at an average external wall temperature between 640 and 7 1 O O C .  The 

conversion of urea to molecular nitrogen increased with temperature 

from 16% at 64OOC to 60% at 710OC. The true fluid temperature in the 

reactor was not known, but was between the reactor inlet temperature 

near 4OOOC and a maximum about 5OoC above the average external wall 

temperature. 

Dilute solutions of urea (about 1% by weight) were oxidized to 

approximate isothermal reaction conditions at two residence times. 

The conversions for both times were about 2% at 600°C and 30% at 
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65OoC. The insensitivity of conversion to residence time could reflect 

an approach to an equilibrium conversion to molecular nitrogen, or it 

could be a result of the different (and unquantified) mixing, flow 

regime and temperature profiles at the two residence times. 

The activation energy for oxidation of ammonia from urea, calcu- 

lated from conversion data at different temperatures, was between 68 

and 980 kJ/mole (16 and 234 kcal/mole). Different activation energies 

were calculated for different sub-groups of the experimental data. 

The variation by an order of magnitude in the calculated activation 

energy is probably due to the non-isothermal temperature profile in 

the reactor and unknown variation in flow regime. 

Ethanol in a three-to-one weight ratio to urea was added to the 

feed in oxidation experiments for comparison with experiments with 

the same amount of urea but nooethanol (Huff et al., 1984). The de- 

struction of ammonia was in all cases greater with ethanol than 

without, being between 76 and 99.9% for estimated adiabatic reaction 

temperatures between 582 and 657OC; the conversion to molecular 

nitrogen ranged from 18 to 67%. 

residence time, as was the pure urea oxidation data. The increased 

conversion at lower temperatures possible with the ethanol addition may 

be due to local hot regions or increased concentrations of free 

radicals from the oxidation of ethanol. 

due to poor mixing of the various feed streams or uneven heating from 

the reactor-wall heaters. The destruction of ethanol was in all cases 

greater than 99.9%, indicating it is more reactive than ammonia. 

The reaction was again insensitive to 

Local hot regions could arise 

6 



3.2 Process Design 

The preliminary process design for this applicataion was conducted 

by T.B. Thomasson of MODAR, Inc., and is described fully in Huff et 

al. (1984). 

3.3 Oxidation Kinetics of Carbon Monoxide and Ammonia 

This portion of the work was conducted at M.I.T. It is described 

in detail in the thesis by Helling (1986). The remainder of this 

report summarizes the conduct of and results from this work. The 

results will also be published in the open literature (Helling and 

Tester, 1987a; 1987b). 

3.3.1 Apparatus and Procedures 

A tubular reactor system was designed to produce well-character- 

ized data for the quantitative determination of reaction kinetics in 

supercritical water. 

monoxide is shown in Figure 1. Analysis of kinetics was simplified 

by the reactor being both isothermal and in radially well-mixed, one-- 

A schematic of the system for oxidation of carbon 

dimensional plug flow. 

0.211-cm I.D. (1/4 x 0.083 in.) Inconel 625 tubing. The alloy was 

selected for its high strength and corrosion resistance, and the 

reactor was immersed in a fluidized-bed sand bath for temperature 

control. 

The reactor was 4.24 m of 0.635-cm O.D. x 
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Dilute inlet concentrations of combustibles (ammonia,.carbon 

monoxide and ethanol) and oxidant (oxygen) were used in this system. 

Dilute concentrations were prepared by dissolving reagents in room 

temperature water in one-liter, agitated tanks. The two feed solutions 

were heated separately to reaction conditions in less than 10 s in 

a narrow (0.108 cm-I.D.) Hastalloy C276 tubing, and mixed at the 

reactor inlet. This avoided the operating difficulty of controlling 

the composition.of the feed by mixing a large flow of water with a low 

flow of compressed oxygen or combustible. The reactor effluent was 

cooled quickly (at least 2OOOC in the first 0 . 5 s )  in a heat exchanger, 

depressurized, and separated into measured gas and liquid flows. The 

-composition of the gas phase was determined by gas chromatography. The 

system for oxidation of ammonia or water-soluble hydrocarbons used the 

carbon monoxide saturator as a simple tank with a low pressure, inert 

atmosphere. 

3.3.2 Experimental Results 

Over ninety experiments were performed with the apparatus descri- 

Fifty-nine of the experiments were either at conditions to bed above. 

oxidize carbon monoxide in supercritical water containing dissolved 

oxygen (38)  or to react the carbon monoxide with the supercritical 

water to produce carbon dioxide and hydrogen by the water-gas shift 

reaction (21) .  These experiments produced consistent and reproducible 

results and represent the main thrust of the experimental work in 

this thesis. 
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. 

Reactor conditions for these experiments ranged in temperature 

from 400 to 54OoC at nominally constant pressure of 24.6 MPa (3550 

psig) and mass flowrate (1.67~10-~ kg/s or 10 g/min). The typical 

Reynolds- numbers in the reactor were 3100 & 400, and residence times 

between 6 and 14 s . 
mole/L for carbon monoxide, 0.59-4.2~10-~ mole/L for oxygen in the 

oxidation experiments, and the mole fraction of water was greater 

than 0 . 9 9 9 .  The oxygen was usually in excess in the oxidation experi- 

ments although four experiments were conducted at or below stoichio- 

metric oxygen levels. The variation in inlet concentrations arises 

both from changing the mole fraction of the components in the feed and 

also by the change in fluid density with temperature, from 160. kg/rn3 

at 4 O O O C  to 78. kg/m3 at 541oC. 

conducted to investigate the oxidation of ammonia, ethanol, hydrogen 

and the effect of hydrogen and reactor surface area on the carbon 

monoxide reactions. 

Inlet concentrations ranged between 0.75 - 3.9~10- 

The remaining experiments were 

The measured quantities in all experiments included the system 

temperatures and pressures, gas and liquid flowrates, and gas-phase 

composition. With these data and an appropriate set of assumptions, 

the reactor residence time, concentrations in the inlet and outlet, 

conversion, apparent first-order rate constant, average reaction rate, 

and the solubilities in the saturators were all calculated. The key 

assumptions were that equilibrium episted between carbon dioxide in 

the gas phase and dissolved carbon dioxide in the water effluent, 

the reactor inlet concentrations were found from outlet concentrations 
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by a mass balance, and the fluid properties were those of water. 

The form of the global expression for the reaction of carbon 

monoxide was assumed as: 

where : 

- dlC01 - A exp (-E,/RT) [CO]a[O,]b[H,O]' 
dt 

S - 1  A = pre-exponential factor (L/mole) a+b+c - 1 

E, - activation energy, kJ/mole 
R - universal gas constant, 8.31 J/mole-K 
T = absolute temperature, K 

a,b,c = reaction orders 

The orders of the reaction were sometimes fixed to specific values 

(such as zero or one) before regression of the other parameters. 

The temperature dependence of a reaction can be simply demonstrated 

by graphing the natural log of the apparent first-order rate constant 

k* in s - '  , which is obtained from the data by setting a-1 and b-c-0 in 

Eqn.(l), as a function of the reciprocal absolute temperature in an 

Arrhenius plot. The slope yields the activation energy and the 

intercept yields the pre-exponential constant. 

The Arrhenius plot for the thirty-eight oxidation experiments 

is shown in Figure 2, and is certainly linear over this temperature 

range (40O-54l0C), with an apparent activation energy of 112+5 kJ/mole 

(26.7 kcal/mole) and pre-exponential factor of 10 6'523'5 s- 1 . me data 
are not very scattered despite the 5-8 fold range in the carbon 

monoxide and oxygen concentrations, so the assumed reaction orders may 

be close to being correct. 

Various techniques were tried to regress all the constants in 
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Eqn.(l) from the experimental data. An attempt to linearize the 

equation by estimating initial rates for low conversion experiments was 

limited by the lack of data at conversions less than lo%, so the 

parameters were determined by a Gauss-Newton non-linear optimization 

technique. The "best-fit" equation is: 

(2) 
1.018+0.09 0.03+0.04 - dlCOl - 107'25t0.53exp(-120.+7.7/RT) [GO] LO2 I 

dt 

where the stated uncertainties are the 95% confidence limits, the 

activation energy is in kJ,  and the concentrations are in mole/L. 

The model fits the data to within a conversion of + 6 % .  This equation 

is truly a global expression, and does not attempt to separate contri- 

butions to the production of carbon monoxide of the water-gas shift 

pathway, or: 

CO + H20 -> H2 + CO2 

from a direct oxidation pathway, represented as: 

co + 1/2 0, -> CO, 

( 3 )  

( 4 )  

The lack of a statistically significant dependence of the conver- 

sion on the oxygen concentration in Eqn.(2) is surprising. 

concentration was varied by a factor of eight in these experiments 

(0.59-4.8~10'~ mole/L), and from near stoichiometric (98%) to excess 

(515% of stoichiometric), with no consistent trends by visual observa- 

tion or statistical analysis of the data. 

monoxide in supercritical water is independent of the specific oxygen 

level in the range of conditions studied here, but the presence of 

oxygen can still have an effect on the pathway of the reaction. 

Setting the oxygen term to zero did not change the other parameters 

The oxygen 

The oxidation of carbon 
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significantly. 

improve the fit to the data enough to warrant the additional term, and 

since the water concentration was not changed except by changing the 

temperature, its effect could not be confidently separated from that of 

temperature. Regressed parameters for different assumed forms of the 

rate law are listed in Table 1. 

Including a term for the concentration of water did not 

The two major pathways to produce carbon dioxide can be distin- 

guished because hydrogen is only produced by the water-gas shift. Thus 

the ratio of hydrogen produced to carbon dioxide produced is approxi- 

mately the fraction of the carbon dioxide that was produced by the 

water-gas shift reaction. The ratio would be the exact fraction if 

none of the hydrogen produced reacted with oxygen to form water. 

ratio of hydrogen produced to carbon dioxide produced is plotted in 

Figure 3 for the 38 oxidation experiments, and decreases from 75% to 

20% with increasing temperature. The water-gas shift reaction, by this 

measure, is clearly an important part of the total carbon dioxide 

production rate. 

shift reaction apparently proceeds by a less activated, parallel 

reaction to the direct oxidation pathway. 

The 

c 

The decrease in this ratio shows that the water-gas 

Twenty-one experiments were conducted with no oxygen intentionally 

added to the reactor to determine kinetic parameters for the global 

water-gas shift reaction. Air leakage during gas sampling and analysis 

made it impossible to rule out the presence of some oxygen in the 

reactor (from dissolved air in the water, or gas pockets in the 

apparatus), although at worst, the level of oxygen was still two orders 
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Table 1. Summarv of Empirical Rate Expressions 

(a,b) Objective (c) Model T w e  Parameters 

( orders k ((L/mole) 
log, o A  E, (J/mole) a b C 

- - Water-Gas 1.60 62,900 0.5677 0.0419 
Shift - + 1.70 2 4100 & 0.051 

5.24 80,930 0.5863 - 1 0.0414 
+ 1.57 & 4749 2 0.026 - 

- 1.001 0.0413 5.09 79,750 0.5621 
- + 1.65 2 4925 2 0.066 - + 0.041 

Global 7.251 120,300 1.014 0.03 0.0374 
Oxidation 0.260 & 3816 ' & 0.043 2 0.02 
of Carbon 
Monoxide 7.121 122,300 1.011 0.25 0.0364 - - + 0.247 & 3590 & 0.016 

- 0.596 0.0362 7.213 127,600 1.001 
+ 0.0261 - - + 0.249 & 3632 & 0.042 

0.03 0.0338 Direct 17.38 237,600 1.874 
Ox idat ion - + 0.803 & 11,910 & 0.011 & 0.03 
of Carbon 
Monoxide 18.08 251,800 2.066 - 0.25 0.0327 

- + 0.816 12,070 & 0.043 

Dryer and 12.35 167,500 1 0.5 0.25 
Glassman(l973) 0.40 - + 5000 

Hydrogen 10.9 192,000 1 
Ox idat ion & 6.9 -& 1 2 2 , 0 0 0  

Ethanol 21.81 340,000 1 - 
Oxidation - + 6.0 - + 50,000 
a) Parameters in: rate - A exp (-E,/RT) [CO, EtOH or H2]' [ O 2 I b  [HiO]" 

b) Uncertainties are standard deviations; if no uncertainty is listed, 
the stated value was assumed 

c)  Objective is the mean deviation (x,bs - X c a t c ) y 1 ' 2  with this 
mode 1 
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of magnitude less than in the oxidation experiments. 

The first step in the analysis of the data was to generate an 

Arrhenius plot of the natural log of the apparent first-order rate 

constant versus the reciprocal temperature, as was done with the 

oxidation experiments. 

broken line shows the best-fit line for the oxidation experiments. 

contrast to the Arrhenius plot for the global oxidation experiments 

This plot is shown in Figure 4, where the 

In 

(Figure 2), the water-gas shift data show more scatter and the best-fit 

line has a lower slope, indicating a lower activation energy. 

A non-linear dependence of the rate on the concentration of carbon 

monoxide was discovered by performing a non-linear regression of the 

data, as was done with the oxidation experiments. The resulting best 

expression is : 

(5) 
0.568+0.107 - drCOl = 101'60L3'57exp(-62.9+8.6 /RT) [CO] 

dt 

The key differences between the two global rate expressions (Eqns.(2) 

and (5)) is that the water-gas shift rate has about half the activation 

energy of the oxidation, a much lower pre-exponential term, and also 

an order with respect to carbon monoxide 44% lower than the oxidation 

experiments. 

temperatures (400-450°C), but they diverge significantly at increasing 

temperatures, so that above 5OOOC the difference in the two pathways 

The two rate expressions and data sets overlap at low 

is clear. Neither expression has a dependence on oxygen concentration, 

although the presence of oxygen seems to allow the more highly acti- 

vated reaction path to be followed. 

The experimental results for the oxidation of carbon monoxide and 
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the water-gas shift reaction could be modeled by at least three 

sets of global reactions. 

gas reactions, as described by Eqns.(3) and (4) above. The second is 

assuming the water-gas shift reaction is completely reversible (so 

that increasing hydrogen concentrations will decrease the rate of 

carbon dioxide production) and the hydrogen is consumed at higher 

temperatures in the oxidation experiments by reaction with oxygen. 

The third model includes reactions at the reactor wall (catalysis), 

especially for the water-gas reaction. The data presented so far 

are sufficient to fully characterize the first parallel reaction model; 

qualitative conclusions can be made on the others. 

The first is parallel oxidation and water-- 

- 

The best, non-linear, empirical model for the water-gas shift 

reaction (Eqn.(5)) was included in a regression of the data from the 

oxidation experiments so that the overall conversion of carbon monoxide 

was calculated from two parallel and simultaneous paths: one due to 

an oxygen facilitated pathway, or direct oxidation, and the other 

to the water-gas shift. The resulting regressed expression for the . 

separated direct oxidation rate was: 

(6) 
1.8720.02 0.03+0.06 - d I CO '1 4k1 ' exp ( - 2 3 8 . +24. /RT) [ CO 3 I 

dt 

The order with respect to oxygen again is not statistically signifi- 

cantly different from zero (at a 95% confidence level). Other regres- 

sed parameters are reported in Table 1. 

Five experiments were performed with dilute solutions of carbon 

monoxide and hydrogen fed to the reactor at three nominal temperatures 

(425, 483 and 541OC). The amount of hydrogen in the inlet was two 
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to four times as great as the hydrogen in the outlet of a similar 

water-gas shift experiment, with the ratio being lower for the high 

temperature experiments, where more hydrogen was produced in the 

comparable water-gas shift experiment. 

in the water-gas shift experiments is assumed to increase linearly with 

time from an initial concentration of zero, then the ratio of the 

average hydrogen concentration for these experiments to the correspon- ~ 

ding water-gas shift experiments is about four to eight. 

excess in hydrogen should have been enough to demonstrate if hydrogen 

had an effect on carbon dioxide production. 

If the hydrogen concentration 

This large 

The results of these experiments showed little effect of the 

A slight decrease in conversion occurred in the excess hydrogen. 

excess hydrogen experiments at 541 and 483OC (22 and 32 relative 

percent), but this is within possible experimental error and is a much 

smaller effect than would be observed for this great excess of hydrogen 

and any reasonable order with respect to hydrogen (greater than 0.2 for 

the reverse reaction). 

(425OC) suggest a possible reaction acceleration due to the presence 

of hydrogen, but again much of the apparent acceleration could be 

due to experimental uncertainties. One experiment was made to measure 

directly the rate of the reverse water-gas shift reaction at 483OC 

by reacting dilute solutions of hydrogen and carbon dioxide. The 

conversion of carbon dioxide to carbon monoxide was at most 0.4%, 

and even this amount of carbon monoxide could have been an analytical 

artifact or a residual trace left in the reactor from previous experi- 

The set of experiments at low temperature 
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ment. These experiments indicate that the reverse reaction is negli- 

gible at dilute conditions in supercritical water. 

Inconel 6 2 5 ,  an alloy composed primarily of nickel, chromium 

and molybdenum, was the primary material used in the tubular reactor. 

It is not known to be a catalyst for either oxidation of carbon 

monoxide or the water-gas shift reaction, but many metals do catalyze 

these reactions to some extent. A series of experiments was conducted 

to evaluate the.magnitude of any potential catalytic effects in which 

the surface area was increased by 52% and the reactor volume decreased 

by 14% by packing the tubular reactor with irregularly shaped shavings 

of Inconel 6 2 5 .  The nominal mesh size of the pieces was - 1 6  +20 mesh 

-(0.084 - 0.10 cm), and the estimated specific surface area was 3 . 0  

m2/kg. 

are in the range of square meters per gram (Satterfield, 1980). 

Attempts to pack the reactor with a fine powder of Inconel 625 (-80 

+lo0 mesh) were unsuccessful, as the pressure drop was excessive, 

greater than 2 . 3 8  MPa ( 3 5 0  psi) over the approximately 1.8 m packed 

1er;gth of the reactor and 5 micron frit (used as a screen), at typical 

flowrates ( 1 . 6 7  x 10 kg/s or 10 g/min). 

This is very low compared to typical porous catalysts, which 

-4  

Nine experiments were conducted with carbon monoxide fed to the 

packed reactor. All were conducted at temperatures for which previous 

experimental data existed: nominally 4 2 5 ,  475 and 523OC. Seven of 

the experiments were oxidation tests, since 

they should occur in this system where more 

Two water-gas shift conditions were studied 

2 1  

if any effects existed, 

reactions are 

In addition 

possible. 

to the 
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temperatures, most of the other operating variables for all nine 

experiments were very close to specific previous runs, except that two 

experiments used a lower inlet concentration of carbon monoxide than 

the earl-ier run. These results suggest that the reactor surface has a 

small or negligible effect on carbon monoxide reaction rates, although 

experiments with a greater increase in the surface area should be 

conducted to confirm this. 

oxygen, or carbon dioxide and hydrogen were attempted in the packed 

reactor. 

No tests with excess hydrogen, hydrogen and 

Two other compounds studied, in addition to carbon monoxide, whose 

oxidation kinetics are important to the understanding of reactions in 

supercritical water, were ammonia and ethanol. Ammonia was selected as 

it is known to oxidize slower than other species and is the rate-- 

limiting reaction in the conversion of organic nitrogen to molecular 

nitrogen. 

temperatures limited operations with the present apparatus to below 

550OC. 

of ammonia that kinetics parameters for oxidation in supercritical 

water could not be quantitatively determined. 

conversions of about 5 %  were only observed at 540OC. 

ature, addition of ethanol at a mass concentration equal to 73% of the 

ammonia did not alter the measured conversion. 

temperatures (probably above 600OC) will be required to study the 

kinetics-of ammonia oxidation as well as the co-oxidation of ammonia 

Difficulty in reaching and controlling high sand-bath 

These lower temperatures resulted in such low conversions 

Measurable ammonia 

At this temper- 

Much higher reaction 

and ethanol in supercritical water. 
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The direct oxidation of ethanol in supercritical water was inves- 

tigated in a series of exploratory experiments. The inlet species 

for four of these experiments included only ethanol, water and oxygen 

in order to estimate the effect of temperature on the oxidation of 

this simple organic compound between 484 and 54loC, at oxygen levels 

between 2.2 and 3 . 6 ~ 1 0 ~ ~  mole/L, and ethanol levels between 6.7 and 

7 . 9 ~ 1 0 - ~  mole/L. The variation in ethanol and oxygen concentrations 

were due solely to the changes in the reactor fluid density with 

temperature. The feed solution for all the experiments with ethanol 

was a 0.1 vol% aqueous solution prepared at normal temperature and 

pressure. 

No experiments were conducted where the concentrations of ethanol 

or oxygen were varied significantly, so the reaction was assumed to 

be first order in ethanol and zero in oxygen, which is consistent 

with the observed global rate law for carbon monoxide oxidation in 

supercritical water. A plot of the log of the first-order rate 

constant versus the reciprocal absolute temperature is shown in Figure 

5 for four ethanol oxidation experiments and three other experiments 

with ethanol. 

conversion of 16% at 484OC to 99.5% at 54loC, and the data are reason- 

The reaction is clearly highly activated, going from a 

ably linear. A least-squares linear regression of the four oxidation 

data yielded a rate expression as: 

- d fEtOH1 - 1021'826* exp (-340.2215. kJ/RT) [EtOH]' (7) 
dt 

The conversion of ethanol reported here is conversion of ethanol to 

any product (disappearance of ethanol). The closure of the mass 
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balance for carbon is adequate, being between 93.5 and 105.8%. Most 

(greater than 85%) of the ethanol was converted to either carbon 

monoxide or carbon dioxide at temperatures above 5 2 O o C ,  and more carbon 

dioxide was formed at higher temperatures, as would be expected. Only 

one other liquid product of reaction was identified, which was acetal- 

dehyde, which usually accounted for 1% or so of the carbon. 

3.3.3 Modeling of Experimental Data 

Expressions have been developed for gas-phase oxidation of wet 

carbon monoxide that could apply to reactions in supercritical water, 

and several were tested by comparing their predictions of conversion 

for a given set of conditions to the experimentally determined values. 

Such calculations were done for global rate expressions proposed by 

Hottel, et al. (1965), Lavrov (1962), Dryer, et al. (1973), Howard, 

et al. (1973), and Graven and Long (1954); the results are listed 

in Table 2. The experiments are listed by the reaction temperature, 

as this is the key operating condition that affects reaction rates. 

The three experiments were not at similar concentrations or residence 

times. 

None of the global expressions for gas-phase reactions accurately 

predict the conversion of carbon monoxide to carbon dioxide in super- 

critical water. The best results were obtained with the correlation 

by Dryer and Glassman (1973), which predicted rates at least 2.5 times 

greater than those observed in supercritical water. The other oxida- 

tion expressions over-predicted the conversions by one to four orders 
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Table 2 .  Comparison of Predictions to Experimental Data: 

Conversion at SDecific Residence Times and TemDeratures 

Conversion, % ,  in (Residence Time), s, at: 
Temperature of Experiment, OC 

Model 
400 4 8 4  543  

Global ExDression 

Hottel, Williams, 9 9 . 9 9  9 9 . 9 9  9 9 . 9 9  
Nerheim and Schneider (0.013) ( 0 . 0 0 8 )  ( 0 . 0 0 6 )  
( 1 9 6 5 )  

Lavrov ( 1 9 6 8 )  9 9 . 9 6  9 9 . 9 9  9 9 . 9 9  
( 1 3 . 1 8 )  ( 2 . 8 9 )  ( 0 . 5 1 )  

Dryer and Glassman 2 6 . 9 5  9 2 . 4 0  9 9 . 9 9  
( 1 9 7 3 )  ( 1 3 . 1 8 )  ( 7 . 6 6 )  ( 3 . 2 2 )  

Howard, Williams and 99 .99  9 9 . 9 9  9 9 . 9 9  
Fine ( 1 9 7 3 )  ( 2 . 4 9 )  ( 0 . 4 3 )  ( 0 . 0 5 )  

Graven and Long 0.0015 0.014 0 . 3 6  
( 1 9 5 4 )  ( 1 3 . 1 8 )  ( 7 . 6 6 )  ( 6 . 5 7 )  

Elementarv Network 

Westbrook, Dryer and 3 . 9 8  6 7 . 7  9 9 . 6  
Schug ( 1 9 8 3 )  ( 1 3 . 1 8 )  ( 7 . 6 6 )  ( 6 . 5 7 )  

ExDerimental Data 1 1 . 6  3 6 . 5  8 1 . 3  
( 1 3 . 1 8 )  ( 7 . 6 6 )  ( 6 . 5 7 )  
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of magnitude. 

larger difference than typical for predictions of gas-phase combustion, 

where the models usually agree to within a factor of ten, but the 

accuracy of the predictions with a given model falls off rapidly 

outside the range of conditions for which the correlation was devel- 

oped. 

Long, 1954) under-predicted the conversion by at least two orders of 

magnitude. 

The variation by several orders of magnitude is a 

The one correlation for the water-gas shift reaction (Graven and 

One likely reason for the error in the predictions of oxidation 

rates in supercritical water is the explicit dependence on the concen- 

tration of water. The composition and pressure of the supercritical 

-water environment produces concentrations of water that are two to 

five orders of magnitude greater than those for which these expressions 

were developed. The correlations included water as a minor but 

essential component of the reaction gas, but in the experiments 

conducted here, water is the major component of the supercritical 

mixture, so it is not suprising that the correlations could overpredict 

the effect of the water on the reaction rate. The role of water in the 

reaction mechanism could be much different when it is the one major 

species than when it is a minor species. 

Although the prediction of carbon monoxide conversion using 

gas-phase rate expressions for reaction in supercritical water are off 

by an order of magnitude or more for most of the expressions, the more 

important error is the failure of these global expressions to include 

the importance of the water-gas shift. Hydrogen was a key experimental 

c 
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reaction product in all reactions of carbon monoxide in supercritical 

water, indicating the presence of the water-gas shift reaction, but it 

would be impossible to predict this with the correlations from the 

gas-phase oxidation of carbon monoxide, since these expressions do not 

allow for the formation of hydrogen. Since 20-75% of the carbon 

dioxide that was produced experimentally came from the water-gas shift, 

the overprediction of the conversion from an oxidation pathway is even 

greater than it was for the global reaction. 

to account for hydrogen production, the fit of the global expressions 

to other experiments was not tested. 

Because of the failure 

Elementary reaction models were used in this study as one means 

to fundamentally model the reactions that could occur on a molecular 

level during the oxidation of carbon monoxide and ammonia in supercrit- 

ical water. The experimental reaction environment was modeled as one 

that was isothermal, isobaric, constant density, and in plug flow. The 

assumption of constant temperature and pressure, and plug flow are 

all reasonable from the design and operation of the reactor; the 

assumption of constant density cannot be rigorously true in an isobaric 

system, but is still reasonable for  the dilute reaction environment. 

The experimental variation in temperature and pressure produced a 

maximum variation in the calculated density of 

1.5%. The use of dilute reagents also legitimizes the assumption of 

ideal mixtures in the fluid phase. The fugacity coefficients of the 

dilute reagents (which were also well above their critical temperatures 

and pressures) were estimated to be between 0 .95  and 1 .2 ,  so were 

5%, but usually below 
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assumed to be unity, as were those for all radicals. The real concen- 

tration of the major component, steam, was found for each experimental 

condition from the literature (Keenan et al., 1978), and its fugacity 

coefficient ranged from 0.68 to 0 . 8 5 .  

all the species were found as a function of temperature only from the 

JANAF tables (Miller, Branch and Kee, 1980). Low-pressure (or density) 

rate constants were used for all third-body reactions due to the lack 

of available rate constants for the more appropriate high-pressure (or 

density) conditions. The specific set of reactions used in the 

simulations of carbon monoxide reaction were those presented in 

Westbrook, Dryer and Schug (1982). 

The thermodynamic properties of 

The first test of the elementary model was to compare predictions 

made with the known set of rate constants to experimental data. This 

is shown in Table 2 for the same three experiments that were modeled 

with the global rate expressions. 

conversions of carbon monoxide to carbon dioxide slightly better than 

the best global model, typically being within a factor of two of the 

experimentally determined conversion. Unfortwately the elementary 

model was consistent with the global models and did not predict any 

significant formation of hydrogen. 

of 50 of the observed values. 

model did include the possibility of hydrogen production, as hydrogen 

was one of the ten species that was included in the mechanism and 

presumably modeled as accurately as carbon monoxide and dioxide. 

The elementary model predicted 

Predictions were lower by a factor 

Unlike the global models, the elementary 

Several methods were tried to improve the prediction of hydrogen 
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production with the elementary model. These included modifying the 

reaction set, the thermodynamics, and specific rate constants. The 

attempted improvements were conducted on a simulation of an experiment 

at 484"C, with rate constants arbitrarily adjusted only one reaction 

at a time. The program ODESSA (Leis, 1986), which can both numerically 

integrate and calculate sensitivity parameters for a system of ordinary 

differential equations, was used to identify important reactions to 

try adjustments of rate constants. None of these attempts produced 

satisfactory results (that is increasing hydrogen production by several 

orders of magnitude, and also decreasing the carbon dioxide produc- 

tion). Simulations of the water-gas shift at supercritical and 

gas-phase conditions were as unsuccessful as simulations of oxidations 

at supercritical conditions. The model and program were verified by 

correct simulation of gas-phase combustion data. 

The failure of existing models to predict the reaction rates 

in supercritical water leads to speculation on the effect of the 

solvent on the reaction rates and mechanisms. A solvent can affect 

reaction rates in both radical processes and ionic processes. The 

influence of solvent on ionic reactions is well-understood, as presen- 

ted in many texts on organic chemistry (Streitweiser and Heathcock, 

1974), but the supercritical water environment studied in this work 

was not likely to support ionic reactions due to the low density. The 

possible effects of a solvent on radical processes include altered 

formation and stabilization of radicals or intermediates. For either 

kind of reaction, a solvent can influence the transport on a molecular 
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scale of reactive solutes to each other. 

Water can enter radical, third-body reactions directly as the 

energy carrier for a reaction. Water is very effective in this role, 

but the simulations with the elementary 

previous section suggest that this is not the most important effect of 

the supercritical water on the reaction rates. Supercritical fluids as 

solvents may also form loosely ordered structures on a molecular level 

about solute molecules, as speculated by Abraham and Klein (1985). 

Association on a microscopic scale in supercritical water may be due 

to the limited hydrogen bonding still possible at those conditions. 

Raman spectral evidence reported by Franck (1976) suggests that 5-8% 

of water molecules at 5OOOC are still in a weakly associated state 

with neighboring molecules. A "cage" of water molecules associated 

around solute molecules could stabilize the existence of radicals 

or transition states, prevent solute radicals from reacting with other 

solutes, or both. A cage structure could certainly promote reactions 

between dilute, solute molecules and the predominant solvent. This 

kind of structure is consistent with lower than predicted rates for 

oxidation and higher than expected rates for the water-gas shift 

reaction (the solute-solvent reaction). 

model discussed in the 

=e 

3 . 3 . 4  Conclusions and Recommendations from Kinetics Studies 

1. Empirical kinetics expressions were determined for oxidation 

of carbon monoxide and the water-gas shift reaction in supercriti- 

cal water. The best global model incorporates parallel reaction 
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2. 

3. 

4. 

5. 

pathways of the water-gas shift and direct oxidation, where rates 

of each reaction depend explicitly only on the carbon monoxide 

concentration and temperature. 

Carbon monoxide reacts in supercritical water by a radical pathway 

for the densities studied here. A qualitative model consistent 

with the data is a water (solvent) cage surrounding reactive 

solutes, promoting the water-gas shift reaction between solvent 

and solute, and retarding the direct oxidation reactions. 

No existing global or elementary model predicted the importance 

of the water-gas shift reaction to produce hydrogen. 

adjustments to the elementary model did not improve the prediction 

of hydrogen production. Conversions of carbon monoxide to carbon 

dioxide were predicted to within a factor of two, but this 

agreement is insignificant since the production of hydrogen was 

not predicted. 

Expressions were also determined including dependences on water, 

but these did not improve the fit to data enough to warrant the 

additional parameter. 

on the concentration of hydrogen or oxygen. 

Limited kinetics parameters were determined for oxidation of 

ethanol between 484 and 540OC; ammonia was unreactive up to 540OC. 

Small 

No significant dependence was observed 

3.3.5 Recommendations from Kinetics Studies 

1. Study oxidation of ammonia with and without added organics in 

an improved heater, capable of producing stable temperatures 
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up to 65OoC, or in a batch reactor capable of long (1-60 minute) 

residence times at lower (400-5OO0C) temperatures. 

Investigate the transition of the water-gas shift from a radical 

mechanism to an ionic one, which may exist near the critical 

point, by conducting experiments at higher densities and with 

added hydrogen peroxides as a free-radical generator or hydroxides 

to promote ionic reactions. 

2. 

3. Explore the oxidation in supercritical water of other simple 

organics, representative of classes of molecules, such as methane, 

methanol, methyl-ethyl ketone, acetic acid, chloromethane, or 

urea. 

4.0 REFERENCES 

4.1 Publications Supported by this Contract 

Helling, R.K., Oxidation Kinetics of Simple Molecules in Supercritical 
Water: Carbon Monoxide. Ammonia and Ethanol, Sc.D. Thesis, 
Department of Chemical Engineering, Massachusetts Institute of 
Technoloby, Cambridge MA, July 3 (1986) 

Helling, R.K., and J.W. Tester, "Oxidation Kinetics of Simple Molecules 
in Supercritical Water" paper 45c, presented at A.1.Ch.E. Summer 
National Meeting, Boston MA, August 26 (1986) 

Helling, R.K., and J.W. Tester, "Oxidation Kinetics of Carbon Monoxide 
in Supercritical Water" submitted to - Fuel, 1987a 

Helling, R.K., and J.W. Tester, "Oxidation of Pure and Mixed Simple 
Compounds in Supercritical Water: Carbon Monoxide, Ammonia and 
Ethanol" submitted to ES&T ,, 1987b 

Huff, G.A., R.K. Helling, G.T. Hong, K.C. Swallow and T.B. Thomasson, 
"Supercritical Water Oxidation of Products of Human Metabolism" 
Semi-annual Progress Report for Period October, 1983, to March, 
1984, submitted to NASA-Ames, Contract NAG2-224 (continuation 
Of NSG-2403) 

33 



4.2 Other Publications 

Abraham, M.A., and M.T. Klein, "Pyrolysis of Benzylphenylamine Neat 
and'with Tetralin, Methanol, and Water Solvents" 1nd.Ene.Chem. - 

Prod.Res.Dev., 24, 300 (1985) 

Amin, S., R.C. Reid and M. Modell, "Reforming and Decomposition of 
Glucose in an Aqueous Phase" A.S.Mech.Ene. paper 75-ENAs-21 (1975) 

Antal, M.J., Jr., W.S.L. Mok, J.C. Roy, A. T.-Raissi and D.G.M. Ander- 
son, "Pyrolytic Sources of Hydrocarbons from Biomass" J.Ana1. 
App1. Pyrol., &, 291 (1985) 

Connolly, J.F., "Solubility of Hydrocarbons in Water Near the Critical 
Solution Temperature" J.Chem. Enp. - Data, 11, 13 (1966) 

Cunningham, V.L. ,  P.L. Burk, J.B. Johnston and R.E. Hannah, "The MODAR 
Process: An Effective Oxidation Process for Destruction of 
Biopharmaceutical By-Products'' paper 45c, A.1.Ch.E. Summer 
National Meeting, Boston MA, August 26, 1986 

Dryer, F.L. ,  and J. Glassman, "High Temperature Oxidation of Carbon 
Monoxide and Methane" 14th Smp.(Int.) on Comb.(Proc.), 987 (1973) 

Flarsheim, W., Y-M. TSOU, I. Trachtenberg, K.P. Johnston and A.J. Bard, 
"Electrochemistry in Near-Critical and Supercritical Fluids. 3 .  
Studies of Br-, I-, and Hydroquinone in Aqueous Solutions" 
submitted to J.Phvs Chem., December (1985) 

Franck, E.U., "Water and Aqueous Solutions at High Pressures and 
Temperatures" Pure Am1. Chem., 24, 13 (1970) 

Franck, E.U., "Properties of Water" in Jones (1976), 109 

Franks, F., Ed., Water: A Comprehensive Treatise, Vol.  1: The Physics 
and Physical Chemistry of Water, Plenum Press, New York NY (1972) . 

Graven, W.M., and F.J. Long, "Kinetics and Mechanism of the Two 
Opposing Reactions of the Equilibrium CO + H,O - CO, + H21t JACS, 
- 76(10), 2602 (1954) 

Hottel, H.C., G.C. Williams, N.N. Nerheim and G.R. Schneider, "Kinetic 
Studies in Stirred Reactors: Combustion of Carbon Monoxide and 
Propane" 10th SyrnD.(Int.) on Comb.(Proc.l, 111, 1965 

34 



Howard, J.B., G.C. Williams and D.H. Fine, "Kinetics of Carbon Monoxide 
Oxidation in Post-Flame Gases" 14th Svm~.(Int.) on Comb.(Proc.), 
975 (1973) 

Jones, D. de G., and R.W. Staehle, chairmen, High - Temperature. High 
Pressure Electrochemistry in Aqueous Solutions, Januarv 7-12.  
1973. The University of Surrv. England, National Association 
of Corrosion Engs., Houston TX (1976) 

Keenan, J.H., F.G. Keyes, P.G. Hill and J.G. Moore, Steam Tables (SI 
Units), John Wiley and Sons, New York NY (1978) 

Lawson, J.R., and M.T. Klein, "Influence of Water on Guaiacol Pryoly- 
sis" 1nd.Chem.Enrz. Fund., 24, 203 (1985) 

Leis, J.R., Solution Procedures for Parametric Sensitivitv Analysis 
in Process Design, Sc.D. thesis, Massachusetts Institute of Tech- 
nology, Chemical Engineering, Cambridge MA, January (1986) 

Marshall, W.L. "Predicting Conductance and Equilibrium Behavior of 
~ 

Aqueous Electrolytes at High Temperature and Pressure" in Jones 
(1976).  117 

Martynova, O.I., "Solubility of Inorganic Compounds in Subcritical 
and Supercritical Water" in Jones (1976) ,  131 

Miller, J . A . ,  M.C. Branch and R.J. Kee, "A Chemical Kinetic Model 
for the Selective Reduction of Nitric Oxide by Ammonia" Sandia 
Laboratories Publication SAD80-8635, Albuquerque NM, April (1980) 

Modell, M., G.C. Gaudet, M. Simson, G.T. Hong and K. Bieman, "Supercri- 
tical Water: Testing Reveals New Process Holds Promise" S o l .  Wast- 
es Manag,, August (1982) 

Paulaitis, M.E., V.J. Krukonis, R.T. Kurnik and R.C. Reid, "Supercri- 
tical Fluid Extraction" Rev. Chem. Engr., lJ2), 181 (1983) 

Pray, C.M., C.E. Schweickert and B.H. Minnich, "Solubility of Hydrogen, 
Oxygen, Nitrogen, and Helium in Water at Elevated Temperatures" 
1nd.Eng. Chem., 4 4 ( 5 ) ,  1146 (1952) 

Price, C.M., Wet Oxidation of Human Waste, S.M. thesis, Chemical 
Engineering, Massachusetts Institute of Technology, Cambridge 
MA, February (1981) 

Satterfield, C.N., Heterogeneous Catalvsis in Practice, McGraw-Hill, 
New York NY (1980) 

Streitwisser, A.W. Jr., and C.H. Heathcock, Introduction to Orpanic 
Chemistrv, Macmillan, New York NY (1976) 

35 



Timberlake, S.H., G.T. Hong, M. Simson and M. Modell, "Supercritical 
Water OxidatLon for Wastewater Treatment: Preliminary Study of 
Urea Destruction" S.A.E. Tech. Paper Ser., number 820872 (1982) 

Todheide, K., "Water at High Temperatures and Pressures" in Franks 
(1972), 482 

Westbrook, C.K., F . L .  Dryer and K.P. Schug, "A Comprehensive Mechanism 
for the Pyrolysis and Oxidation of Ethylene" 19th Svmp.(Int.) on 
Comb.(Proc.l, 1531 (1982) 

Whitlock, D.R., Oreanic Reactions in Supercritical Water, S.M. Thesis, 
Chemical Engineering, Massachusetts Institute of Technology, 
Cambridge, MA May (1978) 

Wightman, T.J., Studies in Supercritical Wet Air Oxidation, M.S. The- 
sis, Chemical Engineering, University of California (Berkeley), 
March (1981) 

Woerner, G.A., Thermal Decomposition and Reforminp of Glucose and 
Wood at the Critical Conditions of Water, S.M. thesis, Chemical 
Engineering, Massachusetts Institute of Technology, Cambridge 
MA, August (1976) 

36 


